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Digital Humanities Lab

-+ Advancing the humanities through digital methods
- Focus on big ‘textual’ data
- Interdisciplinary

- Events & Entities

- Change

- Connections
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Jacob Moreno and the Birth of Social Network Analysis

- Psychiatrist and psychodrama founder

- Moreno conducted studies to research group
behavior using "sociometric tests”

- The four features of social network analysis
(Freeman, 2004):

- Motivated by a structural intuition based on ties
linking social actors

-+ Grounded in systematic empirical data
- Use of graphic imagery

- Relied on the use of mathematical and/or
computational models
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Moreno’s network of runaways.

(Freeman, 2004)



A relational and structural perspective

- The network perspective involves the study of
entities as embedded in a network of relations and
seek explanations for social behavior in the structure
of these networks rather than in the individuals alone

- Not just a methodology: it is a unique perspective
on how society functions. Instead of focusing on
Individuals and their attributes, or on macroscopic
social structures, it centers on relations

- Applications:

- Understand how to improve the effectiveness of
a network

- Uncover patterns in relationships or interactions
Find/follow paths that information flows
|dentify key players

- Test hypotheses
Promote social cohesion
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This is an early depiction of what we
call an ‘ego’ network, i.e. a personal
network. The graphic depicts varying
tie strengths via concentric circles
(Wellman, 1998)
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Similarities Social Relations Interactions
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Semantic networks

Defined as: representational format [that would]
permit the meanings' of words to be stored, so
that humanlike use of these meanings is
possible' (Quillian, 1968, p. 216)

The meaning of a word could be represented by
the set of its verbal associations

Basic assumption: language (is) can be modeled
as networks of words and the (lack of) relations
among words
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Networks of words Semantic Networks Networks of concepts

Content networks Co-word maps Maps



What makes semantic networks interesting”

- Correspond to a natural way of organizing information and the way humans think
- Semantic networks allow to model semantic relationships (Sowa, 1991)

- Investigate the meaning of texts by detecting the relationships between and among
words and themes (Alexa, 1997; Carley, 1997a)

- Allow the analysis of words in their context (Honkela, Pulkki, & Kohonen, 1995)
- Expose semantic structures in document collections (Chen, Schuffels, & Orwig, 1996)

- Very flexible way of organizing data: you can easily extend the structure of semantic
networks if needed

* You can easily convert almost any other data structure into semantic networks

- To represent knowledge or to support automated systems for reasoning about
knowledge.
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Socio-semantic networks

- The socio-semantic framework can account for

the meaning structure along with the underlying PRI NN 297
social structures e A AR

Can map not only how meaning is created
through word co-use but also map this to the

pattern of users connected to words and user
Interactions

Based on 2-mode networks:

- two-mode representations of actors/
entities and the concepts they employ



Socio-semantic networks

+ Actors can be related to each other through the different
symbolic forms they use, e.g. ideologies, as in a two-mode
network of actors and symbols.
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|deas with impact:
How connectivity shapes idea diffusion

@\ -
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A positive interaction between content
and social network connectivity

The highest diffusion success can be
attributed to publications with high content
connectivity and high social connectivity

1.2

0.8

|deas which bridge different knowledge
domains in the content network will amass
even more citations when they are
developed by teams that are highly
connected in the social network of co-
authorship teams

High social network
centrality
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Idea diffusion success
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Low content network High content network
centrality centrality
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Siiine Impact: How Connectivity Shapes Idea Diffusion. Research Policy, 49(1).



The Structural Space

- The joint analysis of degree and betweenness

Globally Central
= deg x bet

Locally Central
= deg x (1-bet)

Total degree centrality rank

(vlr;mk(l') = 100)- T,r | (J..(;rdcrcd — (‘D('))

centralities
A
- Useful in |deht|fy|ﬁg those nodes that dlefy patterns Gatekeeper
often found in various network topologies & = (1-deg) x bet
2
g
T
3
- Total Degree Centrality - Betweenness Centrality §
£ Marginal
- Local measure + Global measure %’ = (1-deg) x (1-bet)
[
om
- Popular concepts - Connective
- Important - Influential
- A hot topic's central key - Controls access to other key
concept concepts
- Able to activate many other - Gatekeepers between different
key concepts domains
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4 Structural

Roles
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Betweenness Centrality Rank

Betweenness Centrality Rank
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Thank you!
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“Whenever we look at life, we look at networks.” - Fritjof Capra DIGITAL HUMANITIES LAB



