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Co-word Maps and Topic Modeling:  

A Comparison Using Small and Medium-Sized Corpora (n < 1000) 
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Abstract 

Induced by “big data,” “topic modeling” has become an attractive alternative to mapping co-

words in terms of co-occurrences and co-absences using network techniques. Does topic 

modeling provide an alternative for co-word mapping in research practices using moderately 

sized document collections? We return to the word/document matrix using first a single text with 

a strong argument (“The Leiden Manifesto”) and then upscale to a sample of moderate size (n = 

687) to study the pros and cons of the two approaches in terms of the resulting possibilities for 

making semantic maps that can serve an argument. The results from co-word mapping (using 

two different routines) versus topic modeling are significantly uncorrelated. Whereas 

components in the co-word maps can easily be designated, the topic models provide sets of 

words that are very differently organized. In these samples, the topic models seem to reveal 

similarities other than semantic ones (e.g., linguistic ones). In other words, topic modeling does 

not replace co-word mapping in small and medium-sized sets; but the paper leaves open the 

possibility that topic modeling would work well for the semantic mapping of large sets. 
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1. Introduction 

 

In recent years, the number of options for generating semantic or co-word maps from texts has 

proliferated. Referred to as maps (Carley, 1997b), semantic networks (Lehmann, 1992), 

networks of concepts (Popping, 2000), or networks of words (Danowski, 1993), this approach to 

the analysis of texts assumes that the content of communication in language can be modeled as 

networks of words and the relations among them (Danowski, 2009; Sowa, 1992). More 

fundamentally, Hesse (1980)—following Quine’s (e.g., 1960) philosophy of science—argued 

that networks of co-occurrences and co-absences of words are shaped at the epistemic level and 

can thus reveal the evolution of the sciences in considerable detail (Kuhn, 1984; cf. Kuhn, 2000, 

p. 2). From this perspective, the latent structures in the networks can be considered as the 

organizing principles or the codes of the communication (Luhmann, 1990; Rasch, 2002). In 

principle, this “linguistic turn in the philosophy of science” (Rorty, 1992 [1967]) makes the 

sciences amenable to measurement and sociological analysis (Law & Lodge, 1984; Leydesdorff, 

2007).  

 

In science and technology studies (STS), Callon et al. (1983) was the first to place the 

development of co-word maps on the research agenda, but the development of software for the 

mapping remained slow during the 1980s (Leydesdorff, 1989; Tijssen & van Raan, 1989). At the 

time, much of the visualization still had to be done by hand (e.g., Rip & Courtial, 1984; cf. 

Leyesdorff, 1992). Co-word mapping using programs freely available on the internet began to 

take shape only in the second half of the 1990s, when network visualization programs adapted to 
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the graphical user interfaces of new versions of Microsoft’s Windows and the Apple Macintosh 

became available. 

 

One of us, for example, developed a series of routines during the 1990s that allowed, among 

other things, for semantic mapping using text files as input and Pajek for the visualization.1 At 

that time, two programs—ti.exe at http://www.leydesdorff.net/software/ti and fulltext.exe at 

http://www.leydesdorff.net/software/fulltext—were hugely in demand because of a lack of 

alternatives (Vlieger & Leydesdorff, 2011; Leydesdorff & Welbers, 2011). Nowadays, however, 

one has a plethora of options, and the user may find it difficult to choose which representation to 

use. Among others, let us mention: Automap in conjunction with ORA (Carley et al., 2013, 

Carley et al., 2013b),2 VOSviewer (van Eck et al., 2010),3 ConText (Diesner et al., 2015),4 and 

Wordjj.exe (Danowski, 2009).5 Whereas the purpose of the different programs is the same—

visualization of the latent structures in the data (Lazarsfeld & Henry, 1968)—their results can be 

very different. Two parameter choices are relevant: similarity criteria and clustering algorithms 

(e.g., Leydesdorff, 2008; Van Eck & Waltman, 2009). 

 

Our objective in this study is not to compare these word-mapping programs with one another. 

Rather, we aim to compare (co-)word maps with the results of a more recent approach called 

“topic modeling” (Blei et al., 2003). Whereas co-word mapping originated in STS and was 

                                                
1   Pajek is a network analysis and visualization program freely available for non-commercial usage at 
http://mrvar.fdv.uni-lj.si/pajek/ (Retrieved on October 13, 2015).  
2 Available at http://www.casos.cs.cmu.edu/projects/automap/ and http://www.casos.cs.cmu.edu/projects/ora/   
(Retrieved on October 13, 2015). 
3 Available at http://www.vosviewer.com (Retrieved on October 13, 2015). 
4 ConText provides also the option of topic modeling. ConText is available at http://context.lis.illinois.edu/ 
(Retrieved on October 13, 2015). 
5 Available at http://wordij.net/ (Retrieved on October 13, 2015). 
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further developed in library and information science, topic modeling found its origins in natural 

language processing and the computer sciences. Using a probabilistic algorithm, the program 

searches for a specified number of topics indicated by sets of words extracted from the texts 

under study. The output allows for inspection of both documents in terms of their participation in 

the various topics and the relative weights of each word in the topics. The topic model provides 

an orientation for organizing large collections of documents. Mapping and overlays to maps are 

not a primary objective of topic modeling; but this extension has recently been explored using 

VxOrd as an algorithm for mapping large data sets (Klavans & Boyack, 2014; Talley et al., 

2011). 

 

In a study for the U.S. National Institute of Health (NIH), for example, Talley et al. (2011) 

developed a topic model for the accumulated grants (70,000 – 80,000 per year) and the ~220k 

MEDLINE journal articles published between 2007 and 2009, that cited NIH grants “to enhance 

the statistical robustness of the analysis for the corresponding areas of research” (Supplementary 

Methods, p. 18). The testing and validation of a topic model are no sinecures: a topic model 

needs to be trained on a subset and a number of parameters have to be chosen such as the number 

of topics to be distinguished (T), the concentration of topics in a document (alpha), and terms in 

a topic (beta). The results have to be screened manually and/or by automatic scoring systems 

because topics of poor quality remain possible, also after a number of iterations.  

 



5 

 

Figure 1:  Google Trends for “topic model” (blue) and “semantic map” (brown) on November 1, 
2015. 
 

Topic modeling has become increasingly popular in recent years. Figure 1 shows the results of 

comparing the phrase “topic model” (in blue) with “semantic map” (brown) using Google Trends 

(on November 1, 2015). The figure indicates that topic models are currently more popular than 

semantic maps for the purpose of summarizing corpora of texts. This has been enhanced by the 

availability of a user-friendly routine for topic modeling at https://code.google.com/p/topic-

modeling-tool/ since 2013. This routine provides a graphical user interface to MALLET (the 

common name of the “MAchine Learning for LanguagE Toolkit”) which has been developed by 

a team at UMass Amherst since 2002 (McCallum, 2002).6  

 

MALLET has set the standard for topic modelling ever since its introduction (Chang et al., 

2009). Among the many algorithms developed for topic modeling, the original model (Latent 

Dirichlet Allocation or LDA) has remained the most frequently used and was also selected for 

the new application. The same application—that is, LDA in MALLET—is also available in other 

                                                
6 MALLET is available at http://mallet.cs.umass.edu . The topic-modelling tool at https://code.google.com/p/topic-
modeling-tool/ provides an interface to MALLET with the same functionality.  
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programs such as Jana Diesner’s program ConText (Diesner et al., 2015). As Jacobi et al. (2015) 

formulate: “LDA is a cutting edge technique for content analysis, designed to automatically 

organize large archives of documents based on latent topics—measured as patterns of word 

(co-)occurrences.” The National Science Foundation of the U.S.A., for example, used a similar 

topic model based on LDA for the internal categorization of its awards (Nichols, 2014). 

 

The problem with analyzing large corpora of texts that are beyond the human capacity to 

comprehend (by reading) remains the validity of the results. Words are so flexible that one can 

almost always provide an interpretation of groups of words ex post. In this study, we reverse the 

reasoning by taking a bottom-up perspective: we compare the two methods step-by-step by using 

first a single document and then a set of 687 documents. We begin by making the 

word/document matrix using our own routines so that we are able to control the steps. Our 

methods are interfaced with Pajek and SPSS for the statistical analysis. Visualizations in Pajek 

will be exported to VOSviewer for presentational purposes. From the perspective of more 

traditional statistics, one can compare the matrices (e.g., excel sheets) resulting from the topic 

modeling with the factor loadings and factor scores of the word/document matrix. However, the 

algorithm is very different: topic modeling can be considered as belonging to another generation 

of statistics since one can organize huge amounts of data (in this case, texts).  Ding (2011) 

compared the topical model with the topological one in community-detection algorithms 

(Blondel et al., 2008; Newman & Girvan, 2004), and specified the differences. 

 

For the purpose of visually inspecting the differences and similarities of the two representations, 

the results of the topic modeling can be overlaid on the semantic maps. However, for more 
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robust and precise tests of similarity between the results of the two methods, one may use chi-

square (in SPSS).7 In this paper, we use Cramér’s V because it provides a value of the association 

between zero and one, and also tests for significance. We background the technical details (e.g., 

Chang et al., 2009; Grimmer & Stewart, 2013; Mohr & Bogdanov, 2013), and focus 

pragmatically on comparing the two approaches from a user’s perspective, with a specific 

interest in small and medium size data sets. 

 

We are aware that our design begins with the co-word model and, hence, the co-word map 

becomes the baseline for the assessment of the topics. The maps, however, are illustrations 

meant to show the effects of the differences and not meant as Procrustes beds. For this purpose, 

we added statistics. Additionally, the comparison is partly hindered by differences in input and 

output required by or resulting from the two models. For example, the clustering algorithm in 

Pajek we use (Blondel et al., 2008), attributes each word to a single group, whereas each word is 

considered as a multinominal distribution over topics in the results of a topic model, and can thus 

be attributed to more than a single topic. In this case, we try to give the results of the topic model 

priority and compare with the single attribution of this word in the co-word model in each 

instance. However, we do not train the model or revisit it—as one should—but remain on the 

user side by taking up the invitation of the topic-modeling tool at the Google site. Furthermore, 

an ex ante choice has to be made for the number of topics; we orient ourselves using the co-word 

model and factor analysis of the word/document matrix. However, we also follow the suggestion 

of one of the referees to explore ten topics in addition to the five suggested by the multi-variate 

analysis of the matrix. The visuals are used didactically for illustrating the analytical reasoning. 
                                                
7 In a similar vein, Rafols & Leydesdorff (2009) compared content-based classifications of journals with the results 
of algorithmic decompositions in terms of communities (e.g., Newman & Girvan, 2004). 
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2. Data and methods 

 

In order for us to interpret and perhaps validate the results, we first reduce the problem to the 

analysis of a single text with which users may be familiar (or can easily become so) because it is 

at the heart of our field. For this purpose, we chose the so-called “Leiden Manifesto” that was 

published by a group of colleagues in Nature on April 23, 2015 (Hicks et al., 2015). The 

Manifesto intends to provide guidelines for the use of metrics in research evaluation. As of this 

date, the Manifesto has been translated into nine languages other than English (at 

http://www.leidenmanifesto.org/translations.html ), and was cited 25 times in five months (at 

Google Scholar, 28 September 2015). We analyze the Leiden Manifesto in terms of the 26 

substantive paragraphs (as units of analysis) in which the argument is made. 

 

As noted, topic modeling is not developed for a single text. Generally, topic models are used for 

the analysis of large corpora of documents. As a step in this direction, we upscale as a second 

example to a moderately sized set of 687 documents retrieved using ‘"Leiden ranking" OR 

"Leiden rankings"‘ as a search string in Google Scholar (on October 4, 2015). The search string 

“Leiden Manifesto” provided us first with only 53 records at this date, of which many are 

substantially consensual, whereas the “Leiden Rankings” are more controversial. The first 

edition of the Leiden Rankings was from 2007 (Waltman et al., 2012, at p. 2420), and thus this 

discussion has had more time to accumulate. 
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The idea behind “topic modeling,” of course, is to analyze much larger sets that cannot possibly 

be read by human readers. However, the quality of the representation cannot easily be controlled 

when using such “distant reading” (Moretti, 2013). Beyond hundreds of documents or topics, our 

control as human readers diminishes rapidly. The larger set of 687 cases scales the smaller set of 

26 paragraphs in a single document by more than an order of magnitude, and therefore seems a 

prudent choice given the objectives of this study. The number also conveniently remains below 

the display limit of Google at 1000 records.8  

 

Given our user orientation, we select default values within the programs unless we have 

specifiable reasons for choosing otherwise. We discuss the specific choices in each program in 

relation to discussing the results. For example, determining the number of topics in a topic model 

is not a sinecure: Blei et al. (2003) developed “perplexity” as a measure for this purpose.9 One 

can calculate the perplexity by training the model on a subset of the data; but this is beyond the 

practice of an average user who is prompted by the online program to specify the number of 

topics. We will conjecture this number based on the results of a community-finding algorithm 

(Blondel et al., 2008), of the co-word map, and the factor analysis of the word-document matrix. 

These choices make our results comparable across the two types of analysis, given that we also 

use the same samples as inputs. However, our results may be biased in favor of co-word 

modeling because we did not test the topic model independently. We return to this issue of our 

lens in the conclusions section. 

 

                                                
8 On the same date, the search string ‘"ARWU ranking" OR "ARWU rankings" OR "Shanghai ranking" OR 
"Shanghai rankings"‘ returned 2020 results. 
9 The lower the perplexity, the better the prediction. However, the best fit does not have to accord with the optimal 
interpretability of the topics (Chang et al., 2009; Jacobi et al., 2015). 
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3. Results 

 

3.1. The Leiden Manifesto 

After removing para-textual information such as headings, references, etc., the Leiden Manifesto 

contains 26 substantive paragraphs that shape the argument using 724 unique words occurring 

1,926 times. By applying a list of 429 stop words available at  

http://www.lextek.com/manuals/onix/stopwords1.html, 550 unique words remain, of which 75 

occur more than twice. We used these 75 words for the analysis and generated the 

word/occurrence matrix with the words as column variables and the 26 paragraphs as rows.10 In 

order to optimize the visualization, we normalized the word vectors using the cosine (Salton & 

McGill, 1983).11 A threshold level is chosen pragmatically at cosine > 0.2; the size of the nodes 

is proportional to the logarithm of the word frequencies. 

 

                                                
10 We also equate plural and singular nouns. The analysis is based on ti.exe available at 
http://www.leydesdorff.net/software/ti . 
11 The choice of the cosine as a similarity criterion is motivated by our wish to remain as close as possible to the 
representation of factor-analytic results, which are based on Pearson correlations. The cosine can be considered as a 
non-parametric variant of the Pearson correlation since the normalization to the mean is omitted (Ahlgren et al., 
2003; Leydesdorff, 2008; cf. Van Eck & Waltman, 2009). 
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Figure 2: Five clusters of 75 words in a cosine-normalized map (cosine > 0.2) distinguished by 

the algorithm of Blondel et al. (2008); modularity Q = 0.27.  Kamada & Kawai (1989) used for 

the layout. 

 

Figure 2 shows a map of the 75 words using the layout of Kamada & Kawai (1989) as 

implemented in Pajek. Using the implementation of Blondel et al.’s (2008) algorithm in Pajek, 

five clusters are robustly distinguished (Q = 0.27). The green-colored cluster at the top of the 

figure, for example, refers to university ranking, whereas the blue one at the bottom refers to 

evaluation and peer review.  
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Table 1: Highest (and lowest) factor loadings in the case of a five-factor solution (Varimax 
rotated) of the word/document matrix. 
 
Component 1 Component 2 Component 3 Component 4 Component 5 
false (.903) 
avoid (.903) 
precision (.903) 
count (.868) 

percentile (.887) 
top (.761) 
based (.735) 
university (.698) 

Google (.941)  
released (.875) 
scholar (.848) 
web (.828) 

publication (.645) 
historian (.574) 
article (.569) 
field (.548) 

effect (.773) 
goal (.760) 
Australia (.639) 
quality (.620) 

   informed (-.624) 
quantitative (-.614) 
peer (-.579) 
judgement (-.509) 

 

 

Forcing a five-factor solution (Varimax rotated) on the underlying word/document matrix 

provides us with guidance on how to designate the clusters; but a comparison of Table 1 with the 

groupings in Figure 2—based on a community-finding algorithm—teaches us that there remains 

room for divergent interpretations. The grouping using the cosine is also a bit different because 

the factor analysis uses the Pearson correlation (Ahlgren et al., 2003). In sum, both similarity 

measures and clustering algorithms affect the grouping. 

 

The first five factors explain only 47.04% of the variance in the matrix. This relatively low 

percentage is typical for word/document matrices: there is structure in language, but it is not so 

pronounced as to be obvious in terms of word and co-word distributions (Leydesdorff, 1997). 

Words may have different meanings in different contexts, although one expects the meaning of 

specific words to be stable within a single text (Leydesdorff & Hellsten, 2006). 

 

The algorithm of VOSviewer tends to generate more clusters than the Blondel-algorithm. Indeed, 

a sixth group is sometimes indicated with the words “Spanish,” “English-language,”  

“Excellence,” and “High-impact”; but in other runs one can also reproduce the option of 

precisely these same five clusters. The modularity parameter VOS is 0.38. Within VOSviewer, 
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however, one has other options for the visualization, such as the cluster density view or hotmap. 

Among other things, VOSviewer has the advantage of optimizing the labels in the visualization 

so that they are not blurred. When using a semantic map in an argument, however, this is not 

always an advantage because one may wish to discuss a specific word in its context, which for 

one reason or another, may be difficult to foreground.  

 

 

Figure 3: Same clusters as in Figure 2, but using the layout of VOSviewer.  

 

Figure 3 shows the same data as in Figure 2, but using the layout of VOSviewer instead of 

Kamada & Kawai (1989). Pajek—and also Gephi12—allows one to choose among the different 

layout algorithms, and only thereafter decide to export to VOSviewer for a richer visualization. 

However, one can also export to other formats (such as .svg or .eps) and embellish the 

                                                
12 Available at http://gephi.github.io/ (retrieved on October 28, 2015). 
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representation in greater detail and using one’s own preferences (de Nooy et al., 2011; Vlieger & 

Leydesdorff, 2011). The graphical quality of the map can be important when the map is used as a 

persuasive illustration in an argument. 

 

Alternatively, one can feed the textual data also directly into VOSviewer. VOSviewer prompts 

for a few choices. In this case, we chose for “full counting” since we have numerical (counting) 

values in the data. The program recognized 370 terms in the data, of which 31 occur three or 

more times. Thereafter, VOSviewer suggests (default) applying a relevance score for selecting 

the 60% most relevant terms, in this case 19 terms. Given our design, however, we preferred to 

include all 31 terms. 

 

 

Figure 4: Thirty-one words organized into four clusters by VOSviewer. 
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The smaller set of words (31 as against 75) leads to a smaller number of clusters (four instead of 

five; Figure 4). The fourth cluster consists of only two (dispersed) words: “research” and “high-

impact journal”. Van Eck et al. (2010; van Eck & Waltman, 2011) explain the linguistic filter 

used in VOSviewer to compose noun phrases such as “high-impact journal” as terms instead of 

single words. The user has the option to select the words to be included in the analysis manually. 

 

3.2  A topic model of the Leiden Manifesto 

The topic-modeling tool available at https://code.google.com/p/topic-modeling-tool/ uses Latent 

Dirichlet Allocation (LDA). The mathematics of LDA is complex (Blei et al., 2003). The user 

has to choose the number of topics to be extracted from the data. As a default, each topic is 

represented in the output by ten words. Let us for the sake of comparison extract five topics, 

include the same list of stop words, and otherwise use the default values for the (advanced) 

options. Table 2 provides the relevant results (word lists) of this model.  

 

Table 2: Word lists of five topics in the Leiden Manifesto, using LDA/MALLET as 
implemented at https://code.google.com/p/topic-modeling-tool/ 
 
topicId	 words..	

1	 science	evaluation	web	scientists	index	factor	top	peer	journal	judgement	
2	 research	indicators	based	indicator	assessment	evaluators	making	effects	built	excellence	
3	 data	quality	published	field	metrics	avoid	precision	false	robust	systems	
4	 journals	high	papers	language	number	social	english	review	national	spanish	
5	 impact	researchers	citation	information	university	relevant	universities	individual	practice	literature	
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Figure 5: Layout as in Figure 2; but nodes are colored according to the LDA model. (Words not 

covered by the LDA output are colored white.)  

 

Figure 5 shows a structure as in Figure 2, but this time the nodes are colored according to the 

topical assignment of each word (as shown in Table 2). Because we used 75 words above, and 

the five topics are limited to ten words each, 25 words (75 – (5 * 10)) remain unassigned. In 

some cases, there is no one-to-one match between our 75 words and the 50 words included in the 

topics because the topic modeler handles compound words like “high-impact” as two individual 

words: “high” and “impact”. (Here we used the word “impact” for the assignment in the map.) In 

sum, we were able to classify 45 of the 75 words and color them as shown in Figure 5. However, 

among the thirty words indicated not thus classified (white vertices) are words such as 
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“principles”, “performance”, “mission”, “academic”, “publication”, etc., all of which belong to 

the core of the argument in the Leiden Manifesto.13  

 

The clustering in the 45 matched words has a Cramér’s V = .311 (p =.359) with the clustering 

underlying Figure 2; and Cramér’s V = .313 (p = .344) with the VOSviewer classification used 

for Figure 3, whereas the VOSviewer’s and Blondel et al.’s (2008) algorithms lead to two highly 

correlated clusterings (Cramér’s V = .959; p < .000). Thus, the topic model is significantly 

different in all respects from the maps based on co-occurrences of words. Note that this does not 

imply that the topic model is “wrong,” but only that the results are incompatible with those of the 

co-word map, in the case of a corpus of 26 paragraphs constituting a single text. One cannot 

exclude that the grouping of the documents over the topics is meaningful despite the relative 

incomprehensibility of the assignment of words to topics. We tested this by comparing the 26 

paragraphs in terms of the sequence number of the topic with the highest contribution, on the one 

side, and the sequence number of the factor with the highest absolute factor score. This relation 

is significant at the 5% level (Cramér’s V = .517; p = 0.034). 

 

In summary: the main difference between using VOSviewer or our routines with Pajek for the 

mapping is that VOSviewer pre-processes the data in search of noun-phrases. The other 

selections made by VOSviewer are suggestions, which can be declined. Furthermore, one is 

bound to the layout of VOSviewer, but the files can be prepared and saved in Pajek format and 

                                                
13 Using MALLET, all words are multinominally distributed over the topics, but this matrix is not provided in the 
standard output. The focus is on the participation of the documents in topics—comparable with factor scores. If the 
distribution of a word over the topics is flat, however, this negatively affects the assignment to the top-group of ten 
words in each topic. Some of the central words in the argument may remain invisible because they are not 
statistically significant for specific paragraphs. 
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then represented with other layouts and analyzed in statistical terms. The philosophy, however, is 

different: VOSviewer is organized from the perspective of visualization, whereas in Pajek the 

emphasis is on the network statistics; visualization follows as a second objective. While the 

results using these two methods for making co-word maps are recognizably similar and 

significantly correlated statistically, the results of the topic model were significantly non-

correlated and not easy to interpret.  

 

3.3.  The Second Case: the “Leiden Rankings”  

 

In the next round, we upscale to the 687 records retrieved from Google Scholar with the search 

string ‘"Leiden ranking" OR "Leiden rankings." These docuemnts contain 1,778 words (stop 

words excluded), which occur 4,724 times. However, this list still contains noise words in 

languages other than English, such as “und”, “der”, “de”, “la”, etc. Sixty-four words occur ten or 

more times, among which 56 are not stop words. We use these 56 words and repeat the analysis 

as above.  
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Figure 6: Four clusters of 56 words in a cosine-normalized map (cosine > 0.1) distinguished by 

the algorithm of Blondel et al. (2008); modularity Q = 0.36.  Kamada & Kawai (1989) used for 

the layout. 

 

Figure 6 shows that the cosine-normalized map of these 56 words is organized even more clearly 

than the one based on the Leiden Manifesto (Figure 2 above). As can be expected, this network 

is more loosely organized than a co-word network based on an argument in a single document. A 

single paper is more densely packed than a set of documents from various authors (Leydesdorff 

& Hellsten, 2006). Accordingly, the minimal threshold had to be reduced to cosine > 0.1.14  

 

                                                
14 With the threshold at cosine > 0.2, 27 words are no longer connected (Q = 0.751). 
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The clusters can easily be recognized as meaningful: two Italian words are set apart (in blue), but 

in relation to a cluster of words (yellow) that indicate the ranking of universities at the global 

level. The cluster of red-colored words indicates bibliometric analysis, while the green-colored 

words are used to discuss the effects of rankings on universities and research. Using factor 

analysis of the word/document matrix in this case, the scree plot confirms that no more than 

three or four groups should be distinguished.  

 

Let us now run the same file using topic modeling. We chose the same parameters as before: five 

topics of ten words. The resulting 50 words indicate several non-English stop words as topical, 

such as the articles from Latin languages (“la”, “las”, and “los”). However, 35 words could be 

matched with the 56 words used above.15 Figure 7 shows the result of using topics for the 

coloring of the nodes in Figure 6; Table 3 lists the topics in terms of ten words each. Because 

some words are attributed to more than a single topic, 39 words can be compared statistically: 

Cramér’s V = .240; p = .811. The two representations are thus significantly different. 

 

Table 3: Word lists of five topics in the set of 687 documents, using LDA/MALLET as 
implemented at https://code.google.com/p/topic-modeling-tool/ 
 
topicId	 words..	

1	 rankings	higher	institutions	indicators	world	science	los	european	excellence	und	
2	 de	la	performance	en	based	ranking	universidades	las	espa	sciences	
3	 universities	education	ranking	academic	evaluation	indicator	systems	citations	papers	policy	
4	 impact	data	study	leiden	scientific	global	national	comparison	international	approach	
5	 research	university	citation	analysis	case	bibliometric	web	fields	bibliometrics	collaboration	

 
 

                                                
15 The word “ranking” is classified in both topic 2 and 3. We assigned it (arbitrarily) to topic 2 in Figure 7. 
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Figure 7: Layout as in Figure 6; but coloring of the nodes according to the LDA model. (Words 

not covered by the LDA output are colored white.) 

 

In our opinion, these results are confusing. Not only are “university”, “ranking”, and “Leiden” 

placed in different topics, “research” and “collaboration” (pink-colored) are assigned to topics 

different from “performance” (green) and “evaluation” (red). Important words such as 

“publication” (or “publications”) and “quality” are not considered topical. 
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Figure 8: Four clusters of 35 “topical” words in a cosine-normalized map (cosine > 0.1) 

distinguished by the algorithm of Blondel et al. (2008); modularity Q = 0.33.  Kamada & Kawai 

(1989) used for the layout. 

 

If we extract only the 35 words that were assigned to topics (among these 56 words), and again 

run the algorithm for community-finding as used above, we are able to reproduce the three main 

groups distinguished above (Figure 8): (1) global university ranking (in yellow); (2) bibliometric 

analysis (red); and (3) effects on research (in green). In other words, the topical words can be 

organized meaningfully, but the topic model did not achieve this. Although we extended the set 

by more than an order of magnitude, the topic model still distinguished topics on the basis of 

considerations other than semantics (e.g., statistical or linguistic characteristics). While others 

have argued that the robustness of LDA topic model results is unaffected by the lack of semantic 
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and syntactic information (Mohr & Bogdanov, 2013), our results suggest differently in the case 

of small and medium-sized samples (n of documents < 1,000). 

 

Table 4: Word lists of ten topics in the set of 687 documents, using LDA/MALLET as 
implemented at https://code.google.com/p/topic-modeling-tool/ 
 
topicId	 words..	

1	 research	science	leiden	approach	ranking	information	class	medicine	scientometrics	economy	
2	 de	la	en	los	espa	el	fica	superior	educaci	sobre	
3	 impact	education	indicators	comparison	papers	evaluation	funding	effect	evaluating	von	
4	 institutions	performance	data	universidades	las	policy	web	del	output	para	
5	 based	academic	global	systems	sciences	cient	report	university	der	implications	
6	 ranking	education	using	indicator	rankings	highly	journal	model	management	knowledge	
7	 universities	analysis	european	excellence	counting	universitarios	normalized	europe	individual	cross	
8	 rankings	world	study	universities	institutional	publications	bibliometric	international	und	university	
9	 university	citation	top	perspective	publication	quality	innovation	strategic	olas	distributions	
10	 scientific	national	fields	bibliometrics	citation	cited	collaboration	level	scholarly	countries	

 

At the suggestion of one of our referees, we also explored a topic model with ten topics, each 

represented by ten words (Table 4). Fifty-five of the hundred instances can be compared with the 

five-topics solution: Cramér’s V = .49; p = .035; and thus moderately significant. However, 

reading the words in the respective topics is not particularly helpful, since one can easily reason 

a semantic context among these words in the different combinations. Although some readings are 

counter-intuitive, one can always argue that this alert function is one of the purposes of the 

analysis. From this perspective, a user evaluation is not sufficient ground for choosing one 

method over another. However, it remains that the words “performance,” “evaluation,” and 

“research” are classified in different topics (that is, topics 4, 3, and 1, respectively). 
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Conclusions and discussion 

 

The pervasive problem with grouping words algorithmically is that one can easily rationalize a 

meaningful coherence among words ex post. Validation is therefore a pertinent problem 

(Grimmer & Stewart, 2013); but sometimes one can compare among results using different 

approaches (cf. Rafols & Leydesdorff, 2009). In this study, we investigated the claim that “topic 

modeling” provides an improved alternative to semantic or co-word mapping based on the 

word/document occurrence matrix. The issue is urgent since programs for topic modeling have 

become user-friendly and very popular in some disciplines, as well as in policy arenas. 

 

Our argument provides a caveat against the use of topic modeling for mapping the semantic 

structures contained in moderately sized sets of documents (n < 1,000): we were not able to 

produce a topic model that outperformed the co-word maps, and the results of the two models 

were not related. The differences between the co-word maps and the topic models were 

statistically significant, although we used the same input data and the same list of stop words in 

both cases. Our argument is not at the level of the ensuing visualizations (since these require 

additional choices such as the layout), but at the level of the underlying statistics. The 

visualizations serve as illustrations to our argument. 

 

One limitation to our study is the use of small and medium-size document sets and the choice of 

LDA in the implementation of the topic-modeling software available from Google. In addition to 

LDA, a number of other algorithms have been developed for topic modeling, such as 

Hierarchical Dirichlet Process (HDP), etc. However, what these algorithms have in common is 
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that they are based on statistical models developed for machine learning and natural language 

processing using computers, whereas co-word models have been developed in the information 

sciences with the objective of a meaningful interpretation of the results (Callon et al., 1986; Rip, 

1997). As topic models are further developed in order to handle “big data,” validation becomes 

increasingly difficult, since no human interpretation can capture such large volumes of text. 

However, the computer algorithm may find nuances and differences that are not obviously 

meaningful to a human interpreter (Chang et al., 2010; Jacobi et al., 2015, at p. 6).  

 

Additionally, unlike semantic networks, topic models allow no flexibility regarding the selection 

of words to be fitted to the model. After the correction for stop words, topic models categorize 

all remaining words into topics.  Whereas this particular treatment of data can be useful in 

reducing human bias, it also limits the extent to which the analyst is able to use contextual 

knowledge to separate between relevant and irrelevant words for the problem under 

investigation.   

 

We also compared two co-word models. The fast development of social network analysis over 

the past twenty years has led to the development of software that can be used in the analysis of 

co-word maps extracted from texts. Using VOSviewer or Pajek as examples, we have shown that 

one can use these programs for processing small and medium-sized samples to obtain 

meaningful and (significantly) comparable results. One (dis)advantage of VOSviewer may be 

that the program makes some parameter choices in the background. Using the word/document 

matrix, an analyst is able to countermand these choices. In other words, the choice among these 

programs can be pragmatic, particularly in the case of large sets. In case of doubt, one can 
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always return to the underlying word/document matrices. While the visualizations can be used to 

support an argument, one should be careful not to build one’s arguments exclusively based on 

visualizations because maps remain projections on a two-dimensional plane of a multi-

dimensional complexity. 

 

In the case of topic modeling, informed choices of parameters (e.g., the number of topics) require 

testing the model. This is often beyond the competence of a user who wishes to apply a topic 

model to make or illustrate an argument. The availability of MALLET topic modeling at the 

Google interface invites, in our opinion, its use without further reflection. As we have shown, the 

results can then be confusing for a number of reasons. Topic modeling is a statistical technique 

based on a random starting point, so that one cannot expect two runs to provide the same results. 

One can run the model a number of times until one finds a satisfying solution, but the validity of 

that solution is as doubtful as any other solution.  

 

The counter argument here can be that the results of separate runs represent different 

interpretations of the same data, and are therefore compatible by definition (Goldstone & 

Underwood, 2012). While such an argument might be satisfactory in methodological research 

settings, this statistical approach does not resolve the validity issues of topic model solutions.  

Sets of seven or ten words can almost always be rationalized ex post. However, these sets of 

words may not necessarily represent topics a human reader would identify because topic models 

uncover statistical patterns within a corpus whether or not they are interpretable (Blei & Lafferty, 

2009).  The topics remain algorithmic artifacts that do not match with the interpretation of a 

human reader in the case of small and medium-sized samples. Our results do not exclude the 
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possibility that topic models perform better when larger sets are analyzed. However, the claim 

that upscaling to large sets would improve the quality of the topics remains unproven. 

 

Users who are unable to read large amounts of texts may be satisfied using topic modeling even 

if the quality of these indicators is debatable. As noted, the NSF had a model of 1000 topics 

constructed on the basis of 170,000 awards granted between 2000 and 2012. Using this model 

for the evaluation, Nichols (2014, at p. 747) claimed that 89% of the awards granted by the 

directorate of the Social and Behavioral Sciences are indicated as “interdisciplinary research.” 

To what extent is this astonishing result perhaps a consequence of the mixing of disciplinary 

terminologies by the topic model?  

 

As noted, the qualitative interpretability of topics in terms of words does not inform us about the 

quality of the clustering of the documents in the set. Topic modeling may be an effective tool for 

clustering large (“big”) sets of documents, comparable with techniques such as community-

finding in social network analysis (Blondel et al., 2008; Ding, 2011; Newman & Girvan, 2004). 

However, one cannot infer from the quality of the clustering of documents along the one axis of 

the word/document matrix to the quality of the grouping of the words along the other axis. In the 

case of limited document sets, such as the semantic mapping of scholarly discourses in terms of 

words and co-words, our results give reason for concern.  
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